
A Brief History of Early Convolutional Coding 

For forward error correction (FEC) coding in 1974, decoded information bit error 
rate (BER) and decoder complexity was everything. It was presumed, almost 
correctly, that minimizing decoded “codeword” error rate in linear codes equaled 
minimizing BER (not true, but close enough for the times). And as far as 
complexity went, the original “forward” Viterbi algorithm (VA) was the only 
maximum likelihood (ML) decoding rule known in 1973 for linear convolutional 
codes, and so its then-considerable complexity wasn’t a gamebreaker. Simpler 
approaches, like sequential, feedback or threshold decoding, were not ML. But 
useful systems exploiting these alternative decoding rules got built anyway. 
ML decoding requires comparing all the paths through a convolutional code trellis 
spanning the length of a “codeword” and selecting the best among them. This is 
precisely what makes Viterbi decoding optimal over codewords, vice globally 
optimal. Excepting the sadly unreachable maximum a priori (MAP) optimality of 
the merely-imagined BCJR (Bahl, Cocke, Jelenick and Raviv) decoding, all other 
realized decoding schemes, by selecting a merely “good” path by some criterion but 
not this best one, are sub-ML. Due to the essence of ML decoding resting on 
codewords, it must be noted that convolutional codeword length is a distribution, 
not a fixed number. The tail of this distribution is not limited. And so all ML 
decoding is, alas, only approximately ML, but it can be a very good approximation. 
Practical ML decoding was and is just called maximum likelihood, as if it was 
exactly so. 
Among the several alternatives to ML convolutional decoding, a very simple 
scheme was feedback decoding. On its own, feedback decoding was not very strong 
as it depended on a very short “backward look” through the convolutional code 
trellis or tree (more on that later). Basically, a new code symbol arriving in conflict 
with previous code symbols could be corrected immediately to resolve the conflict 
and the correction “fed back” into the incoming codeword. The decoder then 
proceeds on until the next conflict. This might work for an isolated symbol error or 
two, but more complex error patterns would quickly induce failure of a realizable 
“conflict resolution table.” So feedback decoding seemed, on first examination, to 
be useful only for “good” channels and fairly low (inherently strong) code rates but 
of low code complexity, i.e. low code constraint length (or short convolutional 
product length), allowing simple resolution tables. I.e., a waste of code rate. But 
this was misleading in the face of interleaving. Interleaving, a subject in itself, 
allows the “memory” of the channel to be smoothed out, or even destroyed, by 
averaging the distance in occurrence between de-interleaved channel errors. This 
means that the de-interleaved errors are mostly of the simple, single-symbol, 
isolated kind, perfect for resolution by a feedback decoder. A simple interstitial-
encoder-stage interleaver got invented and made feedback decoding useful for over 
a decade, into the late 1970s at least. But the coding gain of feedback coding is, 
simply, inferior compared to most anything else (excepting perhaps threshold 
decoding, which is worse yet, ignored here and essentially unused, even then). 



	 K.	Kumm,	Spring	2017	 2	

Decoded error rate had been analyzed in the 1960s using exponential bounds to 
reveal, for a given code rate, the superiority of convolutional over algebraic codes 
of the same rate, a result that stands. Nevertheless, a rich landscape of algebraic 
codes, and their sometimes simple decoding rules, was advantageously applied to 
data structures both before or after channel decoding using convolutional codes. 
Applying a second code “outside” of an “inner” convolutional code was called 
“concatenated coding,” and an “outer” algebraic code version was common in FEC 
before 1980. Still later, algebraic codes such as Reed-Muller were used stand-alone 
to reliably transfer meta-data about subsequent channel coding parameters and 
other aspects of the physical layer transmission format. 
Our subject is convolution coding. But as an important aside, algebraic coding is 
not at all dead, but now more often an accessory than alternative to convolutional 
coding. This of course ignores the modern reprise of the Gallagher block codes, 
now known as low density parity check (LDPC) codes, closer to algebraic codes 
than to convolutional. The LDPC codes, for the long block lengths that make them 
valuable, are a viable alternative to either algebraic or convolutional codes in some 
applications. Just where algebraic and iteratively-decoded LDPC codes will be in 
another generation of FEC from now is perhaps as unknown as where turbo 
convolutional coding would be after its first few years following their discovery in 
1992. Indeed, mythology has it that Viterbi himself did not initially believe, for a 
very short while, that turbo-coding could be “real.” Turbo codes and the Belief 
Propagation algorithm were alien to the ironically deterministic world of FEC 
algorithms in those first few years. 
Now back to the formative, if not dominant emergence of Viterbi decoding. 
Decoding by VA of convolutional, i.e. regular trellis, codes was and remains the 
only literal ML procedure, since MAP decoding (e.g., BCJR) does not contain an 
explicit “select” (and discard) step on the way to finding a best encoder state, vice 
information decision. In applying the VA, there is a successively-progressing 
computation at every state for each depth of the trellis called add-compare-select, 
or ACS, an monogram made famous by Linkabit Corporation in the late 1960s and 
early 70s. It became widely adopted by any practitioner who got into convolutional 
coding as ACS wasn’t patented. That corporate strategy would change by the 
1990s as patents began to reign supreme, and pervasive in coding, as in virtually 
all other technologies. 
Oddly, Viterbi’s likelihood rule, or VA, was only one “part” of Viterbi decoding. The 
other part, “tracing back” efficiently from a “best” selection by likelihood ratio to 
the output decisions, was recognized and described by Viterbi. But no easy way of 
doing this potentially awkward reaching back was found until Viterbi’s colleague 
J. A. Heller invented a proprietary trace back algorithm, called “chaining back,” in 
1968 or so on the very heels of the algorithm paper. Once encountered, this trace-
back scheme would be readily apparent to the cognosenti but improbably was not 
reverse-engineered for a decade. The two algorithmic parts were now efficiently 



	 K.	Kumm,	Spring	2017	 3	

combined to make Viterbi decoding the powerhouse of channel decoding, and in 
other applications as well, for the next two decades. 
There was a powerful alternative to Viterbi decoding of convolutional codes, way 
beyond the early feedback decoding idea. Sequential decoding, in which paths 
along a code’s “tree” (the unraveled version of its trellis) were “traveled” in a 
dynamic “search” forward and backward for an acceptable codeword path, that 
path being the first which “solved” the requisite received corrupted codeword 
correction, was known at least as early as 1962. One could say that sequential 
decoding vaulted convolutional coding into stardom even before the VA appeared. 
Tree search sequential decoding was much lower computational complexity than 
the VA, and so it was before and would remain a popular implementation. This is 
because only the tiniest fraction of a code tree, and hence trellis as well, required 
searching, allowing hugely-longer code constraint lengths (K) to be used. In this 
way, sequential decoding could achieve a coding gain for a given code rate 
exceeding, theoretically at least, the best short-K Viterbi decoders that could be 
built in the same timeframe. But this promise was compromised by the 
requirement to very occasionally search very deep into the tree. 
Sequential decoding used the Fano algorithm or some equivalent search scheme 
(e.g., the Stack algorithm). For a fixed computation clock-to-data rate ratio, deep 
searches require a commensurate decoding delay. This throughput decoding delay 
and depth backward into the tree is reflected in a “threshold” probability metric 
that is computationally asserted against the metric result of a syndrome decoder, 
as opposed to a trellis path memory. This is the second main distinction between 
sequential and VA decoding. The details of metrics are beyond our scope here. 
Because sequential decoding tree searches occupy time, a buffer memory is 
mandatory in order to hold incoming channel data long enough that a decision (on 
a badly corrupted codeword) can be made and the algorithm finally moved forward 
to the latest incoming channel data. However, if the search is long enough, the 
available buffer memory is overrun by the relentless incoming channel data, and 
sequential decoding “fails.” In that case, the search must be abandoned and 
undecoded, corrupted channel bits mapped as best as possible for the “failed” 
codeword to the decoded output, with a concomittant burst error hit to the BER. 
This failure-handling mechanism allows the decoding to pick up and proceed 
onward, past the failed segment, to the rest of the channel data. Buffer memory 
failure and its burst of output errors is characterized by a Pareto random variable 
and distribution. It is mainly Pareto-distributed buffer failures, not computational 
decoding errors, that dominate sequential decoding performance. 
In fairness, sequential decoding with very long K could vie with short-K Viterbi 
decoding in BER for a given SNR up to the 1980s. But practical decoders must 
limit buffer memory size for reasons of both cost and allowable thoughput delay. 
And very high data rates tend to demand unreachable computation clock-to-data 
rate ratio. It comes down to economic and operational limitations in specific 
applications. Both schemes were used for decades, but Viterbi decoding dominated 



	 K.	Kumm,	Spring	2017	 4	

numerically in applications preferring it, and winning in a growing way with ever-
growing channel data rates. For those who argue that sequential decoding should 
get a reprise for IP packet communication, it is pointed out that packet decoding is 
also natural for turbo- and LDPC coding, both “capacity approaching” (for 
different individual reasons) and stronger than any single-iteration FEC like 
sequential decoding. Sequential decoding is now essentially historical. 
 


